

# Purposes for fish consumption surveys

- 1. To determine trends in seafood consumption
- 2. To determine fishing pressures on water bodies
- To assess water body or site specific risks posed by contaminants in <u>seafood</u>.
  - a) Environmental regulation
  - b) Fish consumption advisories
    - i. Identification of water bodies where fish consumption advisories are needed
    - ii. Determine effectiveness of fish consumption advisories
- 4. To support development of water quality criteria

# Fish consumption data needed for water quality standards development

- Representative of population of interest
- Data required for general population and high consumers
- Characterizes consumption of desired groups
- Rates not suppressed due to environmental contamination
- 5. Provides range of statistics suitable for AWQC development

- 6. Addresses consumption of relevant species
- 7. Addresses consumption of relevant fish preparations
- 8. Identifies sources of fish
- Accounts for temporal variation in fish consumption

### Survey components

#### **Short term**

#### • Pros:

- Not cognitively challenging
- Accurately records recent consumption

#### • Cons:

- Variable
- Difficult to predict long term consumption.
- Can be difficult to predict consumption of infrequently consumed items

### **Food Frequency Questionnaire (FFQ)**

#### • Pros:

- Provides estimate of long term consumption
- Found to have low variability

#### • Cons:

- Not accurate predictors of long term intake
- Cognitively challenging
- Estimates affected by recent diet

### Validating short term and FFQ

- How accurate and precise are short term and FFQ methods for measuring dietary intake?
- Compare reported intake with scientific measures of intake.
  - Record dietary intake using short term and FFQ instruments
  - Measure biomarkers of dietary intake
    - Energy: Using doubly labeled water (deuterium and oxygen-18) to track CO<sub>2</sub> production and consequently energy
    - Protein: Measured using urinary nitrogen
  - Compare recorded vs. measured intake and describe error

# Observing Protein and Energy Nutrition (OPEN) (Subar et al. 2003)

- 261 men and 223 women aged 40-69 years in Maryland
- Measured protein and energy intake.
- Recorded protein and energy intake:
  - Interviewer-administered 24HR
  - FFQ (Diet History Questionnaire)

# Results of "Open"

- 24 hour intakes more accurate predictors of usual intake (UI) but have higher variance
- FFQ intakes less
  accurate predictors of
  usual intake but have
  lower variance
- Both 24 hour and FFQ underestimate UI, though FFQ does so to a greater degree



### National data: uses, sources, analysis

- Continuing Survey of Food Intake by Individuals, 1994-1996
  - U.S. EPA 2002. Estimated Per Capita Fish Consumption in the United States.
  - U.S. EPA. 2000. Methodology for Deriving Ambient Water Quality Criteria for the Protection of Human Health.

# National data: CSFII 1994-' 96 & 1998: sampling strategy



### National surveys and fish consumption

- Characterizes average intake
- Individuals record two 24 hour recall intakes on non-consecutive days
- Consumers defined as individuals that consumed fish on either survey day
- Records some source information

### Issues with the national data

- Representative of the United States but potentially not representative for specific regions
- Not representative of all minority groups
- Short observational period, designed to derive average consumption, is not ideal for predicting upper percentiles of consumption.
- Does not provide detailed source of fish information

# National FCR data, should we include non-consumers or not?

- Including non-consumers (i.e. those did not consume on either interview day)
  - Shouldn't include non-consumers in consumption rate estimates, as they aren't exposed!
  - Including non-consumers <u>decreases</u> estimates of average and FCR percentiles relative to "true" values.
- Using consumer only data
  - Short observational period <u>increases</u> estimated FCR relative to true values. Increased days of observation decrease FCRs by averaging in days without consumption.
  - Consumption rates reflect distribution of portion sizes.

# A better approach! Model long term usual FCR distributions from 24 hour national data

- WA used National Cancer Institute Methodology developed for nutritional surveys (the NCI Method) http://riskfactor.cancer.gov/measurementerror/
- Method to develop fish consumption distributions from NHANES 2003-2006 data assuming:
  - There is an underlying fish consumption distribution for the population.
  - An individual's fish consumption varies from day to day.
  - Each individual has some probability of consuming fish on any given day.
  - There may be a correlation between the frequency of fish consumption and the amount of fish consumed.

### Re-analysis of NHANES, 2003-2006 FCRs

#### **Consumer Only Data Without Adjustment**

| Species   | N     | Mean | 50%  | 75%  | 80%  | 85%   | 90%   | 95%   | 99%   |
|-----------|-------|------|------|------|------|-------|-------|-------|-------|
| All       | 2,853 | 56.0 | 37.9 | 78.8 | 87.6 | 105.2 | 127.9 | 168.3 | 255.7 |
| Finfish   | 2,200 | 49.9 | 34.6 | 68.9 | 82.4 | 95.4  | 115.3 | 149.8 | 217.0 |
| Shellfish | 1,113 | 43.0 | 25.7 | 54.4 | 63.0 | 75.0  | 100.5 | 146.6 | 249.6 |

#### NCI Method Model Using Consumer Only<sup>1</sup> Data

| Species   | N     | Mean | 50%  | 75%  | 80%  | 85%  | 90%  | 95%  | 99%  |
|-----------|-------|------|------|------|------|------|------|------|------|
| All fish  | 6,465 | 18.8 | 12.7 | 24.8 | 28.9 | 34.5 | 42.5 | 56.6 | 90.8 |
| Finfish   | 6,465 | 14.0 | 9.0  | 18.1 | 21.2 | 25.5 | 31.8 | 43.3 | 72.7 |
| Shellfish | 6,465 | 5.4  | 2.4  | 6.0  | 7.5  | 9.7  | 13.2 | 20.5 | 43.8 |

<sup>&</sup>lt;sup>1</sup>A question "Do you ever consume fish," was used to ID individuals that were fish consumers.

# Data collection and factors affecting the quality of FCR studies

### Sample Size

- Required sample size depends on groups you want to draw conclusions about.
- Computation
  - Based on desired percent difference between the mean and an upper confidence limit on the mean.
  - Regional tribal surveys computed sample size assuming log normal FCR distributions and 95% UCL is 20% > mean
    - $\exp(1.96 \times SDV / SqRt(n) \times SqRt(1 n/N)) = 1.2$
    - Where: N = population size, n = sample size, SDV = standard deviation
- Should we be looking at sample size based on deriving robust upper percentiles??

### Data collection instruments

Refer to table: Comparing data collection instruments

- Personal interview
- Creel survey
- Mail

- Internet
- Telephone
- Diary

Derived from: U.S. EPA 1998, Guidance for Conducting Fish and Wildlife Consumption Surveys, U.S. EPA, Science and Technology, EPA-823-B-98-007

# Accounting for temporal trends in fish consumption

- Consumption impacted by conditions at the time of interview.
  - What was recently consumed
  - Availability of fish
- Approaches for dealing with temporal trends
  - Repeat interviews of individuals over time
  - Interview fractions of sample population over time
  - Creel surveys: Conduct interviews throughout the fishing season and cover relevant times

### Data analysis

- Outliers
  - Real or errors?
  - Affects statistics
    - Accuracy of upper percentile rates
    - Impact on average consumption
- Weighting: Adjusting representativeness of FCRs obtained from different groups within a sample population to reflect the population the survey will be applied to.

### Survey quality considerations

- Formation of a planning group with appropriate membership.
- Pilot testing of survey with subsequent modification.
- Interviewer training
- Re-interviewing
- Data analysis and data quality measures clearly defined and documented
- Peer review and potentially publication

### Suppression and study selection

"A suppression effect occurs when a fish consumption rate for a given subpopulation reflects a current level of consumption that is artificially diminished from an appropriate baseline level of consumption for that subpopulation . . . When agencies set environmental standards using a fish consumption rate based upon an artificially diminished consumption level, they may set in motion a downward spiral whereby the resulting standards permit further contamination and/or depletion of the fish and aquatic resources."

National Environmental Justice Advisory Committee, 2002.

### National recommended rates

- Water Programs U.S. EPA 2000 Human Health <u>Methodology</u>
- FCR data hierarchy:
- 1. Local watersheds
- 2. Similar populations
- 3. FCRs from national data
- 4. Defaults, CSFII '94-' 96
- 17.5 g/d general & recreational anglers
- 142.4 g/d subsistence

## Questions?